
ES Crossover / Recombination
Application of operator creates one child (not two)
Is applied times to create an offspring population of

size (on which then mutation and selection is applied)
Per offspring gene two parent genes are involved
Choices:

combination of two parent genes:
 average value of parents (intermediate recombination)
 value of one randomly selected parent (discrete recombination)

choice of parents:
 a different pair of parents for each gene (global recombination)
 the same pair of parents for all genes

ES Crossover / Recombination
Default choice: discrete recombination on phenotype,

intermediate recombination on strategy parameters

GAs vs. ES
Genetic algorithms
Crossover is the main

operator
Uses also mutation

Encoding for problem
representation

Biased selection of the
parents

Algorithm parameters
often fixed

Selection Crossover → →
Mutation

Evolution strategies
Mutation is the main

operator
Uses also crossover

(recombination)
No encoding needed for

problem representation
Random selection of the

parents
Adaptive set of algorithm

parameters (strategy
parameters)

Crossover Mutation → →
Selection

Genetic Programming
Goal: to learn computer programs from examples (like in

machine learning and data mining)

Main idea:
represent (simple) computer programs in individuals of
arbitrary size

Redefinitions of
selection
crossover
mutation

Individuals are Program Trees /
Parse Trees
Representation of

Arithmetic formulas

Logical formulas

Computer programs

Representation of
Arithmetic Formula as Tree

Representation of
Logical Formula

Representation of
Computer Programs

Representation
Trees consisting of:

terminals (leaves)
 constants
 variables (inputs to the program/formula)

functions of fixed arity (internal nodes)

Considerations in Function
Selection
Closure: any function should be well-defined for all

arguments

Example: { *, / } is not closed as division is not well
defined if the second argument is 0 redefine /.→

Sufficiency: the function and terminal set should be
able to represent a desirable solution

Evolutionary Cycle
Fixed population size
Create a new population by randomly selecting an

operation to apply, each of which adds one or two
individuals into the new population, starting from one
or two fitness proportionally selected individuals:
reproduction (copying)
one of many crossover operations
one of many mutation operations

Initialization
Given is a maximum depth on trees Dmax

Full method:
 for each level < Dmax insert a node with function symbol

(recursively add children of appropriate types)
 for level Dmax insert a node with a terminal

Grow method:
 for each level < Dmax insert a node with either a terminal or a

function symbol (and recursively add children of appropriate types
to these nodes)

 for level Dmax insert a node with a terminal

Combined method: half of the population full, the other grown

Mutation
Operator name Description

Point mutation single node exchanged against
random node of same class

Permutation arguments of a node permuted

Hoist new individual generated from
subtree

Expansion terminal exchanged against
random subtree

Collapse subtree subtree exchanged against
random terminal

Subtree mutation subtree exchanged against
random subtree

Point Mutation

Permutation

Hoist

Expansion Mutation

Collapse Subtree Mutation

Subtree Mutation

Crossover

Self-Crossover

Bloat
“Survival of the fattest”, i.e. the tree sizes in the

populations increase over time

Countermeasures:
simplification
penalty for large trees
hard constraints on the size of trees resulting from

operations

Editing Operator
An operation that simplifies expressions
Examples:

X AND X X→
X OR X X→
NOT(NOT(X)) X→
X + 0 X→
X . 1 X→
X . 0 0→
….

Example – Symbolic Regression
Pythagorean Theorem

22 bac
Negnevitsky 2004

Underlying function:

Fitness cases:

Language elements: +, -, *, /, sqrt, a, b

Not (necessarily)
linear

Example – Symbolic Regression
Approximation of sin(x)
Given examples (x,sin(x)) with x in {0,1,...,9}
Find a good approximation of sin(x)

Example – Symbolic Regression
Approximation of sin(x)

GAs vs. GP
Genetic algorithms
Chromosomes represent

coded solutions
Fixed length

chromosomes
A small set of well-

defined genetic
operators

Conceptually simple
Fixed order of operators

Genetic programming
Chromosomes represent

executable code
Variable length

chromosomes
More complex genetic

operators required
Conceptually complex
Order of operators not

fixed

	Slide 65
	Slide 66
	GAs vs. ES
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Example – Pythagorean Theorem
	Results
	Slide 93
	Slide 94
	GAs vs. GP

