
ES Crossover / Recombination
Application of operator creates one child (not two)
Is applied       times to create an offspring population of 

size        (on which then mutation and selection is applied)
Per offspring gene two parent genes are involved
Choices:

combination of  two parent genes: 
 average value of parents (intermediate recombination)
 value of one randomly selected parent (discrete recombination)

choice of parents:
 a different pair of parents for each gene (global recombination) 
 the same pair of parents for all genes



ES Crossover / Recombination
Default choice: discrete recombination on phenotype,

intermediate recombination on strategy parameters



GAs vs. ES
Genetic algorithms
Crossover is the main 

operator
Uses also mutation

Encoding for problem 
representation

Biased selection of the 
parents

Algorithm parameters 
often fixed

Selection  Crossover  → →
Mutation

Evolution strategies
Mutation is the main 

operator
Uses also crossover 

(recombination)
No encoding needed for 

problem representation
Random selection of the 

parents
Adaptive set of algorithm 

parameters (strategy 
parameters)

Crossover  Mutation  → →
Selection



Genetic Programming
Goal: to learn computer programs from examples (like in 

machine learning and data mining)

Main idea: 
represent (simple) computer programs in individuals of 
arbitrary size

Redefinitions of
selection
crossover 
mutation



Individuals are Program Trees / 
Parse Trees
Representation of

Arithmetic formulas

Logical formulas

Computer programs



Representation of 
Arithmetic Formula as Tree



Representation of
Logical Formula 



Representation of
Computer Programs



Representation
Trees consisting of:

terminals (leaves)
 constants
 variables (inputs to the program/formula)

functions of fixed arity (internal nodes)



Considerations in Function 
Selection
Closure: any function should be well-defined for all 

arguments 

Example: { *, / } is not closed as division is not well 
defined if the second argument is 0  redefine /.→

Sufficiency: the function and terminal set should be 
able to represent a desirable solution



Evolutionary Cycle
Fixed population size
Create a new population by randomly selecting an 

operation to apply, each of which adds one or two 
individuals into the new population, starting from one 
or two fitness proportionally selected individuals:
reproduction (copying)
one of many crossover operations
one of many mutation operations



Initialization
Given is a maximum depth on trees Dmax

Full method:
 for each level < Dmax insert a node with function symbol

(recursively add children of appropriate types)
 for level Dmax insert a node with a terminal

Grow method:
 for each level < Dmax insert a node with either a terminal or a 

function symbol (and recursively add children of appropriate types 
to these nodes)

 for level Dmax insert a node with a terminal

Combined method: half of the population full, the other grown



Mutation
Operator name Description

Point mutation single node exchanged against 
random node of same class

Permutation arguments of a node permuted

Hoist new individual generated from 
subtree

Expansion terminal exchanged against 
random subtree

Collapse subtree subtree exchanged against 
random terminal

Subtree mutation subtree exchanged against 
random subtree



Point Mutation



Permutation



Hoist



Expansion Mutation



Collapse Subtree Mutation



Subtree Mutation



Crossover



Self-Crossover



Bloat
“Survival of the fattest”, i.e. the tree sizes in the 

populations increase over time

Countermeasures:
simplification
penalty for large trees
hard constraints on the size of trees resulting from 

operations 



Editing Operator
An operation that simplifies expressions
Examples:

X AND X  X→
X OR X  X→
NOT(NOT(X))  X→
X + 0  X→
X . 1  X→
X . 0  0→
….



Example – Symbolic Regression
Pythagorean Theorem

22 bac 
Negnevitsky 2004

Underlying function:

Fitness cases:

Language elements: +, -, *, /, sqrt, a, b

Not (necessarily)
linear





Example – Symbolic Regression
Approximation of sin(x)
Given examples (x,sin(x)) with x in {0,1,...,9}
Find a good approximation of sin(x)



Example – Symbolic Regression
Approximation of sin(x)



GAs vs. GP
Genetic algorithms
Chromosomes represent 

coded solutions
Fixed length 

chromosomes
A small set of well-

defined genetic 
operators

Conceptually simple
Fixed order of operators

Genetic programming
Chromosomes represent 

executable code
Variable length 

chromosomes
More complex genetic 

operators required
Conceptually complex
Order of operators not 

fixed
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