ES Crossover / Recombination

- Application of operator creates one child (not two)
- Is applied λ times to create an offspring population of λ size (on which then mutation and selection is applied)
- Per offspring gene two parent genes are involved

• Choices:

- combination of two parent genes:
 - average value of parents (*intermediate recombination*)
 - value of one randomly selected parent (*discrete recombination*)
- choice of parents:
 - a different pair of parents for each gene (*global recombination*)
 - the same pair of parents for all genes

ES Crossover / Recombination

 Default choice: discrete recombination on phenotype, intermediate recombination on strategy parameters

GAs vs. ES

Genetic algorithms

- Crossover is the main operator
- Uses also mutation
- Encoding for problem representation
- Biased selection of the parents
- Algorithm parameters often fixed
- Selection → Crossover → Mutation

Evolution strategies

- Mutation is the main operator
- Uses also crossover (recombination)
- No encoding needed for problem representation
- Random selection of the parents
- Adaptive set of algorithm parameters (strategy parameters)
- Crossover → Mutation →
 Selection

Genetic Programming

- Goal: to learn computer programs from examples (like in machine learning and data mining)
- Main idea: represent (simple) computer programs in individuals of arbitrary size
- Redefinitions of
 - selection
 - crossover
 - mutation

Individuals are Program Trees / Parse Trees

- Representation of
 - Arithmetic formulas

$$2 \cdot \pi + \left((x+3) - \frac{y}{5+1} \right)$$

Logical formulas

$$(x \land true) \rightarrow ((x \lor y) \lor (z \leftrightarrow (x \land y)))$$

Computer programs

Representation of Arithmetic Formula as Tree

Representation of Logical Formula

Representation of Computer Programs

Representation

- Trees consisting of:
 - terminals (leaves)
 - constants
 - variables (inputs to the program/formula)
 - functions of fixed arity (internal nodes)

Considerations in Function Selection

Closure: any function should be well-defined for all arguments

Example: { *, / } is not closed as division is not well defined if the second argument is $o \rightarrow$ redefine /.

 Sufficiency: the function and terminal set should be able to represent a desirable solution

Evolutionary Cycle

- Fixed population size
- Create a new population by randomly selecting an operation to apply, each of which adds one or two individuals into the new population, starting from one or two fitness proportionally selected individuals:
 - reproduction (copying)
 - one of many crossover operations
 - one of many mutation operations

Initialization

- Given is a maximum depth on trees D_{max}
- Full method:
 - for each level < D_{max} insert a node with function symbol (recursively add children of appropriate types)
 - for level D_{max} insert a node with a terminal
- Grow method:
 - for each level < D_{max} insert a node with either a terminal or a function symbol (and recursively add children of appropriate types to these nodes)
 - for level D_{max} insert a node with a terminal

Combined method: half of the population full, the other grown

Mutation

Operator name	Description
Point mutation	single node exchanged against random node of same class
Permutation	arguments of a node permuted
Hoist	new individual generated from subtree
Expansion	terminal exchanged against random subtree
Collapse subtree	subtree exchanged against random terminal
Subtree mutation	subtree exchanged against random subtree

Point Mutation

Permutation

Hoist

Expansion Mutation

Collapse Subtree Mutation

Subtree Mutation

Crossover

Self-Crossover

Bloat

- "Survival of the fattest", i.e. the tree sizes in the populations increase over time
- Countermeasures:
 - simplification
 - penalty for large trees
 - hard constraints on the size of trees resulting from operations

Editing Operator

- An operation that simplifies expressions
- Examples:
 - $X AND X \rightarrow X$
 - $X \text{ OR } X \rightarrow X$
 - NOT(NOT(X)) \rightarrow X
 - $X + o \rightarrow X$
 - X . 1 \rightarrow X
 - X . $o \rightarrow o$

Example – <u>Symbolic</u> Regression Pythagorean Theorem Not (necessarily) linear

Negnevitsky 2004

Underlying function: $c = \sqrt{a^2 + b^2}$

Fitness cases:

Side <i>a</i>	Side b	Hypotenuse c	Side <i>a</i>	Side b	Hypotemuse c
3	5	5.830952	12	10	15.620499
8	14	16.124515	21	6	21.840330
18	2	18.110770	7	4	8.062258
32	11	33.837849	16	24	28.844410
4	3	5.000000	2	9	9.219545

Language elements: +, -, *, /, sqrt, a, b

Results

Example – Symbolic Regression Approximation of sin(x)

- **Given** examples (x,sin(x)) with x in {0,1,...,9}
- Find a good approximation of sin(x)

Function Sets	Result	Generation	Error (final)	
$F_{i}: \{+, -, *, /, \sin\}$	sin(x)	0	0.00	
$F_2: \{+, -, *, /, \cos\}$	cos(x + 4.66)	12	0.40	
$F_3: \{+, -, *, /\}$	$-0.32 x^2 + x$	29	1.36	

Example – Symbolic Regression Approximation of sin(x)

GAs vs. GP

Genetic algorithms

- Chromosomes represent coded solutions
- Fixed length chromosomes
- A small set of welldefined genetic operators
- Conceptually simple
- Fixed order of operators

Genetic programming

- Chromosomes represent executable code
- Variable length chromosomes
- More complex genetic operators required
- Conceptually complex
- Order of operators not fixed